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ABSTRACT

We have developed a computational method for
transcriptional regulatory network inference,
CARRIE (Computational Ascertainment of Regu-
latory Relationships Inferred from Expression),
which combines microarray and promoter sequence
analysis. CARRIE uses sources of data to identify
the transcription factors (TFs) that regulate gene
expression changes in response to a stimulus and
generates testable hypotheses about the regulatory
network connecting these TFs to the genes they
regulate. The promoter analysis component of
CARRIE, ROVER (Relative OVER-abundance of cis-
elements), is highly accurate at detecting the TFs
that regulate the response to a stimulus. ROVER
also predicts which genes are regulated by each of
these TFs. CARRIE uses these transcriptional inter-
actions to infer a regulatory network. To demon-
strate our method, we applied CARRIE to six sets of
publicly available DNA microarray experiments on
Saccharomyces cerevisiae. The predicted networks
were validated with comparisons to literature
sources, experimental TF binding data, and gene
ontology biological process information.

INTRODUCTION

Automated inference of regulatory networks is a crucial step
in bridging individual molecule characterization and predict-
ive systems biology. In addition, knowledge of the ¯ow of
information through a cell in response to stimuli can be used to
predict the effects of novel stimuli and to modulate the cell's
response by altering the activities of speci®c members of a
network. Understanding biology to this degree will require the
complete determination of the interactions among genes,
proteins and metabolites at many levels of regulation. The
transcriptional portion of a cell's regulatory network is
currently the most tractable given the availability of high-
throughput gene expression data and the progress in sequence
pattern analysis in the bioinformatics community.

Important advances have been made toward understanding
transcriptional regulatory networks. One strategy infers global
networks directly from whole genome microarray data (1±9).
Segal et al. further showed that it was bene®cial to also
incorporate protein±protein interaction data (10). Another
strategy focuses on the identi®cation of shared regulatory
motifs in the promoters of co-regulated genes, signi®ed by
similar expression pro®les. Examples include the identi®ca-
tion of statistically overabundant short oligomers (11,12),
overabundant transcription factor binding motifs (13±17), and
common oligomers via multiple-local alignment of the input
promoter sequences (18±32). Palin et al. investigated the
overlap between genes that change expression due to a gene
deletion and genes with promoters containing binding sites for
a particular transcription factor (TF) (33).

Rather than attempting to determine global regulatory
networks, here we introduce a method of inferring a speci®c
transcriptional network from the response to a single stimulus
or the deletion of a single TF. Accurate predictions of such
speci®c networks are widely applicable since the relationships
of genes in the pathway are well de®ned and the impact of
external stimuli can be clearly delineated. Therefore, testable
hypotheses can be formed about the method of action of a drug
and suggestions can be made regarding later steps in the
network to be targeted with a new drug, potentially resulting in
fewer side effects.

Our method combines two complementary methods for
detecting transcriptional regulation. First, microarray data are
used to reveal the genes that respond to a given stimulus
through changes in mRNA abundance. These genes are
believed to form a co-regulated group. If there are TFs in the
group, they are proposed to regulate the observed expression
changes of the other genes. Two previous studies correlated
the expression pro®les of TFs with those of the genes whose
promoters contained binding sites for these TFs (34,35). Segal
et al. also used the expression levels of candidate regulators to
build regression trees for explaining global gene expression
(9). Second, we identify TFs with binding sites that are
statistically over-represented in the promoter regions of the
co-regulated group of genes. Even if their expression levels do
not change upon stimulation, these TFs are also predicted to
regulate the group. A number of recent papers describe
statistical methods for identifying overabundant TF binding
motifs (13±17). The main novelty of our approach is the
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combination of the above two methods in the construction of
transcriptional networks, along with technical improvements
in the latter method.

Our approach is implemented in a computational tool called
CARRIE (Computational Ascertainment of Regulatory
Relationships Inferred from Expression). The promoter
sequence analysis component of CARRIE is a stand-alone
program called ROVER (Relative OVER-abundance of cis-
elements). ROVER identi®es the TFs most likely to regulate
the observed mRNA abundance changes. It also determines
which speci®c genes are regulated by each identi®ed TF.
Based on this information and the results of microarray
analysis, CARRIE infers a transcriptional regulatory network.
The stimulatory or inhibitory impact of each TF on its
regulated genes is inferred from the directions of change in
their expression levels.

CARRIE was applied to publicly available Saccharomyces
cerevisiae microarray data (36±39). These included six
experiments: three experiments were performed upon stimu-
lation from extracellular signals and the other three involved
wild-type and TF gene deletion strains. A TF gene deletion
experiment can be used to determine the signaling network
downstream of a TF that is active in the wild-type strain. We
predicted transcriptional regulatory networks for these six
experiments and evaluated our predictions with publicly
available data including a large set of chromatin immunopre-
cipitation experiments (40) and gene ontology (41) biological
process annotations. CARRIE produced cohesive networks
that showed signi®cant agreement with experimental results.

MATERIALS AND METHODS

Work¯ow

CARRIE is composed of three components: (i) Microarray
analysis, (ii) Promoter sequence analysis using ROVER, and
(iii) Network inference. Figure 1 summarizes the steps in each
of these processes.

Materials

Six microarray datasets were selected from the SGD
Expression Connection (http://db.yeastgenome.org/cgi-bin/
SGD/expression/expressionConnection.pl). These represent
all available experiments that could be interpreted as two-
condition experiments, and were known to involve at least one
TF with an annotated binding matrix, which is required by
ROVER. Two of the selected data sets have been analyzed by
the authors using promoter analysis tools: one (38) with
consensus binding sequences, and the other (37) with the ab
initio binding site discovery tool MEME (42) in addition to
consensus binding sequences.

The promoters for 6221 genes were obtained from SCPD,
the Saccharomyces cerevisiae Promoter Database (http://
www.cgsigma.schl.org/jian/). The sequences of these pro-
moters were taken to be the 1000 bases upstream of the
transcription start sites and were downloaded on 14 April
2003.

The TF binding site matrices were obtained from version
6.4 of TRANSFAC Professional (43). We selected all 43
matrices that were annotated as representing yeast TFs from

Figure 1. CARRIE work¯ow. This ¯owchart demonstrates the three components of the CARRIE network inference tool.
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the binding site matrix description ®le of TRANSFAC
(matrix.dat). Other yeast TFs included in TRANSFAC had
descriptions but did not contain binding site matrices.

Microarray analysis

We analyzed six two-color cDNA microarray data sets
(Table 1). Each data set represented the differences in gene
expression between two conditions. Three data sets compared
the wild-type with single TF gene deletion (39). These data
sets were also used by Palin et al. to investigate the overlap
between genes whose expression changes due to a gene
deletion and genes with promoters containing binding sites for
a particular TF (33). A single time point, immediately after
alpha mating factor stimulation, was taken from a time series
data set (36) and used to represent the differences in
expression between stimulated and unstimulated cells. Later
time points gave similar results (data not shown). The ®nal
two data sets represented the gene expression differences
between normal growth conditions and either phosphate (38)
or zinc starvation (37).

Each data set was analyzed to select two equal sized sets of
genes. The ®rst set, the positive set, included genes showing
signi®cant expression changes between the two conditions
being studied. The promoters for the genes in the positive set
were all available from SCPD. The second set, the negative
set, was composed of genes that showed the least signi®cant
changes in expression. For the analyses of two data sets
(36,39), absolute ¯uorescence intensities were available. We
limited the negative set to the top 60% of intensity values,
roughly indicating expressed genes. We further limited the
negative set to those genes with promoter information
available in SCPD.

The method for selecting the positive set varied according
to the information available for each data source. The TF gene
deletion (39) and alpha mating factor induction (36) experi-
ments contained a likelihood of change statistic (P value) for
each gene expression ratio, which formed the basis for the
positive gene set for these experiments. This measure of
con®dence took into account the differences in mRNA
abundance, error due to a particular instance of background
subtraction, and gene-speci®c error estimated from prelimin-
ary experiments. A P value cut-off of 0.005 was selected for
the Roberts et al. experiment. A less stringent cut-off of

0.01 was judged to be appropriate for the Hughes et al.
experiments. For the phosphate (38) and zinc (37) starvation
experiments, the fold change information from the two
available replicates formed the basis for the positive set.

ROVER

Given the Position Speci®c Scoring Matrix (PSSM) of a TF,
ROVER calculates a score for each position in an input
sequence. This score is the product of the probabilities of
observing each base in an L-long subsequence, L being the
number of positions in the PSSM. These probabilities are
generated from the TF binding matrix obtained from
TRANSFAC (43) by dividing the counts for each base in
each matrix position by the total number of sequences used to
generate the matrix. We followed Laplace's rule of succession
and added one pseudocount to each position in the matrix to
avoid multiplying by zero.

The negative set was used to determine the minimum score
that would be considered signi®cant in the positive set. This
cut-off score, S, was greater than all but 0.1% of the PSSM
scores from the sequences in the negative set. In other words,
the probability P of a random sequence having a score >S was
0.001. ROVER then identi®ed all sub-sequences in the
positive set promoters that had scores >S. These were
returned as signi®cant sites, i.e. potential binding sites for
the TF described by the PSSM. ROVER then calculated the
probability of observing K or more signi®cant sites in a
promoter with N positions using the binomial distribution,
assuming that binding sites occur with a probability P = 0.001
(equation 1). The resulting probability of overabundance,
P(overabundance), can be interpreted as the likelihood that the
TF regulates a particular gene in the positive set.

P�overabundance� �
XN

k�K

N!

�N ÿ k�!k!
pk�1ÿ p�Nÿk 1

A similar calculation was carried out to determine whether
binding sites for the TF are signi®cantly overabundant in the
entire positive set of promoters. Equation 1 was used, with
N set to the sum of the promoter lengths of all sequences in the
positive set. The resulting probability can be interpreted as the
likelihood that the TF regulates the entire positive set. All

Table 1. Transcription factors identi®ed by CARRIE

Perturbation Known TFsa Identi®ed TF Fold changeb ROVER P valuec Reference

Alpha factor stimulation STE12, MCM1 STE12 3.14 7.03E±19 (36)
Deletion of STE12 STE12 STE12 ±3.09 1.53E±06 (39)
Deletion of GCN4 GCN4 GCN4 ±27.86 2.68E±40 (39)

AP1 1.13 6.10E±71
TBP 1.12 1.53E±35

Deletion of YAP1 YAP1 YAP1 ±28.97 1.26E±25 (39)
ZAP1 ±1.76 4.40E±01
ROX1 ±2.17 6.20E±01

Phosphate starvation PHO4, PHO2 PHO4 1.2 3.06E±17 (38)
Zinc starvation ZAP1 ZAP1 7.49 2.10E±06 (37)

LEU3 ±1.36 9.06E±09

aTFs previously known to be involved in the response to a given condition or knocked out.
bFold change in mRNA abundance for this TF as measured in the corresponding microarray experiment.
cProbability of observing the overabundance of signi®cant binding sites for this TF, in the promoters of genes in our positive set, by chance, as calculated by
ROVER.
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binomial distribution calculations were performed using a C
function library provided as part of the R statistical language
package, version 1.6.2 (http://www.r-project.org).

Recent papers have used similar algorithms to detect the
overabundance of binding sites for a particular TF in a group
of promoters (14±16). The new features in ROVER include
our method for determining the threshold score S and our
novel way of selecting the negative set.

Selecting transcription factors

When searching the positive set of genes for TFs, we matched
all entries in the microarray data to all TFs in the TRANSFAC
database (43), using either standard gene names or SwissProt
identi®ers, depending on availability.

Evaluation of network cohesiveness

The gene ontology (GO) (41) data were obtained from the
Saccharomyces Genome Database (SGD) GO Term Finder
(www.yeastgenome.org/cgi-bin/SGD/GO/goTermFinder) on
9 May 2003. We identi®ed the most relevant GO biological
process category containing the largest number of genes from
each network. The probability of choosing the observed
number of genes (or more) from a given category by chance
was calculated independently through the hypergeometric
distribution. This calculation was performed using the phyper
function from the R statistical language package version 1.6
(http://www.r-project.org). It takes into account the total
number of genes (G), the number of genes in a particular
biological process category (B), the number of genes in the
network (T), and the number of genes in the network that are in
a particular biological process (I), as described in equation 2.

P-value �
XT

i�I

B
i

ÿ �
GÿB
Tÿi

ÿ �
G
T

ÿ � 2

RESULTS

Gene expression pro®ling

Analysis of each microarray data set yielded two equal-sized
groups of genes. The ®rst group, the positive set, consisted of
genes that showed signi®cant changes in mRNA abundance
from one condition to another. The second set of genes, the
negative set, consisted of genes that were expressed under
both conditions but showed no signi®cant changes in mRNA
abundance. The negative sets were used as control sequences,
i.e. they did not contain the TF binding sites that were believed
to be present in the positive sets. As heterochromatin
organization may render the promoter of some genes
inaccessible, we required all genes in the negative sets to be
expressed.

Identifying transcription factors

Two methods were used to identify the TFs regulating the
response to each stimulus. The ®rst method identi®ed
TF-encoding genes among the regulated genes from the
microarray data. The second method made use of a computer
algorithm, ROVER, to identify TFs whose binding sites are
overabundant in the promoters of positive set genes. The

second method supplemented the ®rst by including TFs that
are activated post-transcriptionally.

In ®ve of six stimulation or gene deletion experiments, the
®rst method was suf®cient to select the TFs involved in the
respective network, according to the original studies (Table 1,
all but phosphate starvation). One might suspect that we would
fail to identify the ®rst TFs to be activated in a network
because the signal transduction pathway would directly
modify existing proteins rather than altering mRNA levels.
Nonetheless, in two of the three stimulation data sets, the
primary TFs, STE12 (36) and ZAP1 (37), also show signi®-
cant changes in mRNA abundance. Interestingly, both TFs
were predicted by ROVER to be auto-regulatory (see below),
which is also supported by experimental data in the literature
(37,40,44). This increase in mRNA abundance is presumably
due to the activation of existing STE12 and ZAP1 proteins.
Therefore our ®rst method of TF identi®cation can also
succeed in cases where feedback alters mRNA levels for the
primary TFs. Our second method, ROVER, can identify TFs
that show no detectable changes in expression levels upon
stimulation or knockout, as in the case of PHO4 (38).

ROVER

The goal of ROVER is to detect TFs whose binding sites are
signi®cantly more abundant in the promoters of the positive
set, relative to those in the negative set of genes. Given the
binding preferences (PSSMs) of a library of TFs, as in
TRANSFAC (43), ROVER can determine both the TFs most
likely to regulate the promoters of the relevant genes and the
genes likely to be bound by these TFs.

The PSSMs for 43 yeast TFs are available from
TRANSFAC (43). Figure 2 shows the overabundance scores
[±log(P value), with P value de®ned by equation 1 in
Materials and Methods] for all 43 TFs in the positive sets of
promoters, as selected from the six stimulation or knockout
experiments. ROVER identi®es TFs with signi®cantly over-
represented binding sites in all cases. Such TFs are most likely
to regulate the groups of genes responsive to the stimulus/
knockout. In four of the six conditions, ROVER clearly
separates functional TFs from the other TFs. For the alpha
mating factor stimulation experiment, the biologically rele-
vant TF, STE12, is the most signi®cant TF, with a P value 14
orders of magnitude more signi®cant than the next TF
(Fig. 2a). Seven orders of magnitude separated the regulating
TF, PHO4 (38), from the second most signi®cant TF upon
phosphate starvation (Fig. 2e). Although PHO2 also regulates
responses to phosphate starvation (38), it was not identi®ed
because its PSSM was not available from TRANSFAC. The
high rankings for both GCN4 and YAP1 (same as AP1) in both
the GCN4 and YAP1 knockout experiments may be due to the
high degree of similarity in the PSSMs of these two TFs.
Figure 2f shows that, in the promoters of genes responsive to
zinc starvation, the only TF with a greater overabundance
score than ZAP1 is LEU3. ZAP1 is known to regulate gene
expression under this condition (37), but the biological
relevance of LEU3 is unknown. The PSSMs for ZAP1 and
LEU3 have limited similarity.

In summary, ROVER proved to be highly speci®c in
identifying TFs known to respond to the respective stimuli.
These predictions were consistent with many of those by the
microarray analysis method. In addition, ROVER was able to
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identify PHO4 as regulating the response to phosphate
starvation (38), which was missed by the microarray method.

Finding promoters regulated by the predicted TFs

In addition to predicting the TFs involved in each response,
ROVER also determined which of the regulated promoters
were likely to be bound by each predicted TF. In this
application of ROVER, the P(overabundance) as de®ned in

equation 1 was calculated individually for each promoter in
the positive set. P(overabundance) < 0.01 was considered
signi®cant.

Inference of transcriptional regulatory networks

After determining (i) the genes with signi®cant expression
changes, (ii) the TFs most likely to cause those changes, and
(iii) the genes whose promoters are likely to be bound by each

Figure 2. Detection of TFs responsible for the gene expression changes in six experimental conditions. Each plot (a±f) depicts ±log[P(overabundance)] as
de®ned in equation 1 for each of 43 PSSMs. (a) Alpha Mating Factor Stimulation. STE12 has the most signi®cant overabundance of binding sites, as
expected. MCM1, also known to be involved in the response to alpha factor, is represented by the second and third most signi®cant PSSMs. (b) Deletion of
STE12. STE12 is the most signi®cant as expected. MCM1 is the second most signi®cant PSSM as in (a). (c) Deletion of GCN4. AP1 (same as YAP1), TBP
and GCN4 (there are two TRANSFAC PSSMs for GCN4, indicated as GCN4_1 and GCN4_2) show the most signi®cant P(overabundance) in response to
GCN4 deletion. GCN4 and YAP1 have similar binding preferences. (d) Deletion of YAP1. AP1 (YAP1) is clearly the most signi®cant TF. GCN4 is also
signi®cant, which may be the result of the similarity between its PSSM and that of AP1. (e) Phosphate starvation. As expected, PHO4 is the most signi®cant
TF for this condition. (f) Zinc starvation. ZAP1 is highly signi®cant for this condition, as expected. The biological relevance of LEU3 is unknown.
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of these TFs, we assembled these data to infer a transcriptional
regulatory network for each perturbation response.

The network inference proceeds as follows: (i) if the
receptor protein responsible for sensing the initial stimulus is
known, such as STE2 for alpha mating factor, a link is drawn
between the receptor protein and each predicted TF. These
links are drawn with a dotted line symbolizing that these
connections are likely to be indirect. (ii) Each TF is connected
with the genes that it regulates, as predicted by ROVER. These
links are drawn as solid lines symbolizing direct regulation of
genes by TFs. (iii) The inhibitory/stimulatory relationships
between each TF and the genes it regulates are inferred from
the direction of gene expression change observed for the
regulated gene, and potentially that of the TF, according to
the microarray data. For example, if after some stimulus the
mRNA abundance for TF A increases, the mRNA abundance
for gene 1 decreases, and TF A is shown to bind the promoter
of gene 1, then we infer that TF A inhibits the transcription of
gene 1.

The above steps were implemented with a computer
algorithm called CARRIE. We did not include genes in the
network if ROVER predicted them as unlikely to be regulated
by the identi®ed TFs in the network, despite signi®cant
changes in their mRNA abundance according to the micro-
array analysis. These genes may be false positives from the
microarray analysis or may contain TF binding sites that
ROVER could not detect. ROVER could miss a TF if its
PSSM were absent from TRANSFAC or if the binding sites in
the promoter of the gene were too weak to be detected.

Figures 3 and 4 show two of the networks inferred by
CARRIE. The alpha mating factor network shows many
known features of the response to this mating factor (Fig. 3).
In this network, the TF STE12 up-regulates the expression of
its own gene as well as the gene of the alpha factor receptor
STE2, forming two positive feedback loops. Additionally,
nine of the 18 genes depicted as responsive to stimulation by
STE12 are consistent with previous studies on responses to
alpha factor stimulation (36). Twelve of the 18 genes are
involved in the response to mating factor alpha (mating with
conjugation) according to GO (41). The network inferred from
STE12 deletion experiment (see Supplemental Material) is
highly similar to the network in Figure 3. Since both alpha
factor and STE12 knockout target the same TF, this similarity

in the inferred network con®rms the robustness of CARRIE.
Figure 4 shows such a network inferred from the YAP1
deletion experiment. This example demonstrates the potential
of discovering more complex regulation using our approach.
TFs ROX1 and ZAP1 are expressed at different levels in the
wild-type and YAP1D strains. CARRIE predicts that ZAP1 and
ROX1 are auto-regulatory and that ZAP1 regulates the
expression of ROX1. Evidence for the auto-regulation of
ZAP1 has been presented previously (37). These relationships
indicate that CARRIE can predict multiple levels of
regulation.

Evaluation of transcription factor binding site
predictions

In order to evaluate ROVER's accuracy in detecting the
regulation of a gene by one or more TFs, we compared its
predictions to experimental promoter/TF binding data in a
global analysis using chromatin immunoprecipitation (ChIP)
and microarrays. These data were obtained upon over-
expression of TF-myc fusion proteins using an anti-myc
antibody (40). The authors compared the relative amount of
immunoprecipitated promoter DNA for each of 6270 genes
from extracts of S.cerevisiae over-expressing the fusion
protein, with the background levels of immunoprecipitated
DNA from wild-type cells. This ratio was used to generate a
P value of interaction between a given TF and the promoter of
a given gene. P values < 0.001 were considered to be
signi®cant (40). To judge the similarity between the compu-
tational predictions by ROVER and the experimental ®ndings
by Lee et al., we determined the intersection between the two
data sets for each TF in each of our inferred networks. The
statistical signi®cance of the observed intersection was
calculated using the hypergeometric distribution (equation 2
in Materials and Methods).

Table 2 indicates that the intersection between the experi-
mental and computational promoter binding results was highly
signi®cant except in the case of PHO4, which is involved in
the phosphate starvation condition. In this case, zero of the
seven promoters identi®ed by ROVER showed signi®cant TF
binding in the ChIP data by Lee et al. (40). However, six of
these seven predictions were consistent with ®ndings in earlier
studies (38,45). For the other ®ve cases, the P values
of obtaining the observed computational±experimental

Figure 3. Inferred transcriptional regulatory network mediating mating response. These genes have been predicted by CARRIE to respond to alpha mating
factor stimulation. Solid arrows represent signi®cant overabundance of binding sites for the TF STE12 (rectangle) in the promoters of the genes. The dotted
arrow between STE2 (diamond) and STE12 represents prior knowledge of STE2 as a receptor for the alpha factor stimulus and inferred indirect impacts on
downstream TFs. The `+' symbols represent stimulatory relationships.

184 Nucleic Acids Research, 2004, Vol. 32, No. 1



intersections were less than 7 3 10±8. The percentage of the
genes' promoters predicted by ROVER to be bound by a given
TF was as high as 66% and averaged 35% for the ®ve data sets.

Evaluation of network cohesiveness

In order to evaluate the quality of our inferred networks, we
determined the extent to which the genes in each network were
involved in the same biological process as annotated by GO
(41). We identi®ed the most relevant GO biological process
for the genes in each network using the SGD `GO
TermFinder' (see Materials and Methods). The P value of
the intersection between the genes in our network and the
genes in the selected biological process was calculated using
the hypergeometric distribution (equation 2 in Materials and
Methods).

The cohesiveness of a network, as measured by the
enrichment of genes involved in one biological process, was
highly signi®cant for all of our networks (Table 3). On
average, 42% of the genes in a particular network were
involved in the selected biological process. The probabilities
of observing such a large number of genes in these categories,
by chance, were extremely small, ranging from 5.3 3 10±8 to
1.1 3 10±11. In ®ve of six cases the most common biological
process for the genes in a network was in agreement with

previous data for the stimulus or TF (36±39). The signi®cant
abundance of genes involved in `Amino Acid and Derivative
Metabolism' in the YAP1 deletion network was not directly in
line with previous knowledge about the roles of YAP1. This
unexpected ®nding merits further experimental investigation.

DISCUSSION

We have presented an integrated method, CARRIE, for
automatically inferring the transcriptional portion of a regu-
latory network starting with global gene expression pro®les,
and for attaching con®dence levels to all connections of the
network. The network diagrams generated by CARRIE assist
the rapid assimilation of a large volume of data and aid in the
design of further experiments. Additionally, the multiple
layers of regulation seen in these networks can produce further
inferences regarding the temporal relationships of different
events in the progression of a signal from cellular receptors to
gene expression.

We demonstrated the ability to identify TFs likely to
regulate observed changes in mRNA levels in response to a
stimulus, either by detection of TF genes with altered
expression or by application of our promoter analysis tool
ROVER. The two methods are complementary. Previous

Table 2. Assessment of transcription factor binding predictions

Perturbation Experimentala ROVERb Intersectionc P valued

Alpha factor stimulation (STE12) 56 18 12 <3.11E±12
STE12 deletion (STE12) 56 13 6 <3.11E±12
GCN4 deletion (GCN4) 80 61 21 3.11E±12
YAP1 deletion (YAP1) 45 52 6 6.34E±08
Phosphate starvation (PHO4) 62 7 0e 1e

Zinc starvation (ZAP1) 24 24 4 2.13E±08

aNumber of promoters with signi®cant experimentally measured interactions with the given TF (40).
bNumber of promoters, chosen from the set of genes with signi®cant mRNA abundance changes, with signi®cant binding sites for the given TF, as predicted
by ROVER.
cNumber of genes with signi®cant binding shown in vivo and predicted by ROVER.
dProbability of choosing an intersection of this size or larger by chance.
eSix of the seven genes identi®ed by ROVER were also identi®ed as being regulated by PHO4 in the analysis of the microarray data by Ogawa et al. (38).
See text for more details.

Figure 4. Inferred transcriptional regulatory network controlled by YAP1 activity. These genes have been predicted by CARRIE to respond to YAP1 deletion.
Solid arrows between the TFs (rectangles) and their target genes represent direct regulation predicted by ROVER. Dotted arrows represent inferred indirect
impacts of a known change in the system (DYAP1) on downstream TFs. The `+' symbols represent stimulatory relationships and the `±' symbols denote inhi-
bitory relationships. Note that the TF, ZAP1, is shown to directly regulate another TF, ROX1, demonstrating our ability to detect multiple levels of regulation.
It was not possible to determine the nature of the regulatory relationship between YAP1 and ZAP1 with the available data. A node with three dots is included
to signify that the network has been truncated for display purposes. A full representation of the network is available in the Supplementary Material.
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studies in the inference of response networks (9,34,35) have
also shown the validity of identifying TFs by their own
changes in expression. However, these studies lacked a
method for identi®cation of regulating TFs that are activated
by post-transcriptional modi®cations, which can be detected
with our second method ROVER. Recent papers have used
similar algorithms to detect the overabundance of binding sites
for a particular TF in a group of promoters (14±16). ROVER
improves upon these methods with a better choice of the
threshold score and a novel way of selecting the negative set.
Furthermore, the combination of ROVER with other
components of CARRIE is a novel aspect of our approach.

For each perturbation, the TFs predicted by CARRIE were
consistent with experimental data in the literature. In ®ve of
the six cases, the relevant TFs were identi®able from their own
changes in gene expression. Three of these cases were trivial
given that the microarray data were obtained from yeast
strains in which the genes for the relevant TFs had been
deleted. In the other two cases, the stimuli used in the
experiments resulted in up-regulation of identi®ed TFs.
ROVER provided strong support for both expression-based
predictions. In the sixth case, the TF PHO4 was only
pinpointed by ROVER, and not by the expression-based
method.

Identi®cation of targeted promoters by ROVER is also
consistent with global in vivo DNA binding data. The overlap
between the ChIP results and our TF binding site predictions
was highly signi®cant in ®ve of the six cases (Table 2). The
P values of such large overlaps are extremely small (Table 2).
ChIP data may not be the ideal gold standard for evaluating the
accuracy of ROVER predictions. The rich media growth
conditions used in the experiments by Lee et al. (40) may not
be compatible with the necessary post-transcriptional acti-
vation of certain TFs. For example, PHO4, the critical TF
activated by phosphate starvation is phosphorylated under
normal growth conditions. Phosphate starvation results in
dephosphorylation of PHO4 and its translocation to the
nucleus (38). Thus the lack of agreement between the genes
we predict to be regulated by PHO4 and the ChIP results is not
surprising. Consistent with this interpretation, six of the seven
predictions made by ROVER in this case are supported by
previous studies (38,45). Another concern with the ChIP data
is that the over-expressed TF-myc fusion proteins used in the
experiments (40) may display altered DNA binding in vivo.

This may also contribute to the discrepancy between ChIP
data and ROVER predictions.

Multiple TFs can be identi®ed by ROVER for inclusion in
the inferred network. In this study we have selected the TF
with the most signi®cant P(overabundance) in each set of
regulated promoters. Other TFs that bind a smaller proportion
of the promoters in the positive set would also be ranked
highly by ROVER. For example, MCM1 was the second most
signi®cant TF in regulating the responses to STE12 deletion
and alpha factor stimulation. MCM1 is known to assist STE12
in regulating gene expression in response to alpha factor (36).
In more complicated networks, subsets of the positive set
genes may be involved in multiple pathways. The prioritized
TF list and speci®c TF±promoter relationships provided by
ROVER will capture this information. In some cases (e.g.
Fig. 2c), a small group of TFs are clearly more signi®cant than
all others. In other cases, the cut-offs between signi®cant and
insigni®cant TFs are less clear. Therefore, CARRIE is
proposed as a hypothesis generation tool for experimental
biologists and we suggest that ROVER's output be used as a
prioritized list to guide further investigations. The method
for selecting P(overabundance) cut-offs is currently under
development.

The networks generated by CARRIE are cohesive in terms
of the biological function of the genes involved. A genetic or
environmental stimulus should produce responses speci®c to
that stimulus. We have shown that the networks CARRIE
infers contain a highly signi®cant proportion of genes whose
GO annotations indicate the involvement in a biological
process that is consistent with the original stimulus (Table 3).
This is especially indicative of the quality of the networks
given the limited amount of such biological process informa-
tion (9).

One potential circularity problem with our study is that
some of the binding sites in the regulated set of promoters may
have been utilized to construct the PSSMs of the TFs as
supplied by TRANSFAC. This potential overlap of test and
training sets might cause ROVER to appear more accurate
than it actually is. In our experience, this problem is not as
serious as one would expect. For example, ®ve binding sites
from three promoters were used to construct the PSSM of
STE12. Only STE2 was included in the network and the other
two genes were not included because their expression did not
change signi®cantly. The binding sites in the 17 other genes in

Table 3. Assessment of network cohesiveness

Perturbation GO categorya Genes in GO category Genes in networkb Intersectionc P valued

Alpha factor stimulation Conjugation with cellular fusion 102 18 12 2.19E±11
STE12 deletion Reproduction 168 13 7 1.32E±10
GCN4 deletion Amino acid metabolism 143 61 33 1.13E±11
YAP1 deletion Amino acid and derivative metabolism 155 52 20 1.05E±11
Phosphate starvation Phosphate transport 9 7 2 5.33E±08
Zinc starvation Zinc ion transport 6 24 3 1.66E±09

aThe Gene Ontology Biological Process Category with the largest number of genes from our inferred network.
bNumber of promoters with signi®cant binding sites for the given TF as predicted by ROVER. These promoters were chosen from the set of genes with
signi®cant mRNA abundance changes.
cThe number of genes in our network that are annotated as being involved in the given GO biological process category.
dProbability of choosing an intersection of this size or larger by chance.
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the network were not used by TRANSFAC to construct the
PSSM.

CARRIE may not be able to detect all relevant TFs. Its ®rst
TF identi®cation method can only detect TFs that are
regulated at the level of transcription. Its second method,
ROVER, is limited by the completeness of TRANSFAC. Both
methods rely on the TF binding matrices in TRANSFAC to
determine which genes in the positive set are regulated by the
selected TFs. An ab initio binding site discovery tool [e.g.
(11,12,18±32)] may serve as a useful supplement to the two
methods presented here by identifying binding sites for novel
TFs.

In summary, we have presented a new and reliable method
that can greatly accelerate the experimental dissection of
transcriptional regulatory networks by generating hypotheses
about the transcriptional response to stimuli. Starting with
microarray data that are both widely available and being
generated at an increasingly rapid pace, the methodology
described here can be used to quickly infer a large proportion
of the total signaling network mediating a response to a
cellular stimulus. Our results are provided in an intuitively
understandable yet information dense format that permits
evaluation of the reliability of each prediction. These networks
can be used as road maps for further studies that would not be
possible without a global view of the response phenomena.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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